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Abstract. This paper aims to address the unsupervised video anomaly
detection (VAD) problem, which involves classifying each frame in a
video as normal or abnormal, without any access to labels. To accom-
plish this, the proposed method employs conditional diffusion models,
where the input data is the spatiotemporal features extracted from a
pre-trained network, and the condition is the features extracted from
compact motion representations that summarize a given video segment
in terms of its motion and appearance. Our method utilizes a data-driven
threshold and considers a high reconstruction error as an indicator of
anomalous events. This study is the first to utilize compact motion rep-
resentations for VAD and the experiments conducted on two large-scale
VAD benchmarks demonstrate that they supply relevant information to
the diffusion model, and consequently improve VAD performances w.r.t
the prior art. Importantly, our method exhibits better generalization
performance across different datasets, notably outperforming both the
state-of-the-art and baseline methods. The code of our method is avail-
able HERE.

Keywords: Video anomaly detection · unsupervised learning · video
understanding · conditional diffusion models · generative models

1 Introduction
Detecting anomalous events in videos automatically is a crucial task of computer
vision that has relevance to numerous applications, including but not limited to
intelligent surveillance and activity recognition [11,27,14,6,18,2]. Video anomaly
detection (VAD) can be particularly difficult because abnormal events in the real
world are infrequent and can belong to an unbounded number of categories. As
a result, traditional supervised methods might not be suitable for this task since
balanced normal and abnormal samples are typically unavailable for training.
Moreover, VAD models are challenged by the contextual and often ambiguous
nature of abnormal events, despite their sparsity and diversity [23]. As a result,
VAD is commonly carried out using a one-class learning approach, in which only
normal data are provided during training [22,26,9,34,13]. However, given the dy-
namic nature of real-world applications and the wide range of normal classes, it
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is not practical to have access to every type of normal training data. Therefore,
when using a one-class classifier, there is a high risk of misclassifying an un-
seen normal event as abnormal because its representation might be significantly
different from the representations learned from normal training data [6]. To ad-
dress the aforementioned challenge of data availability, some researchers have
implemented weakly supervised VAD that do not require per-frame annotations
but instead leverage video-level labels [15,28]. In weakly supervised VAD, unlike
its one-class counterpart, a video is considered anomalous if even a single frame
within it is labeled as anomalous. Conversely, a video is labeled as normal only
when all frames within it are labeled as normal. However, such approaches lack
localizing the abnormal portion of the video, which can be impractical when
dealing with long videos. Also, it is important to note that labeling a video as
normal still requires the inspection of entire frames [32]. A more recent approach
to VAD is unsupervised learning, in which unlabelled videos are used as input
and the model learns to classify each frame as normal or anomalous, allowing
to localize the abnormal frames. Unlike a one-class classifier, unsupervised VAD
does not make any assumptions about the distribution of the training data and
does not use any labels during model training. However, it is undoubtedly more
challenging to arrive at the performance of other VAD approaches that use la-
beled training data [32].

This study focuses on performing unsupervised VAD in complex surveillance
scenarios by relying solely on the reconstruction capability of the probabilistic
generative model called diffusion models [12]. The usage of generative models
(e.g., autoencoders) is common for one-class VAD [8,19,23]. However, as shown
in [32] for unsupervised VAD, the autoencoders might require an additional dis-
criminator to be trained collaboratively to reach a desired level of performance.
Instead, our study reveals that diffusion models constitute a more effective cat-
egory of generative models for unsupervised VAD, displaying superior results
when compared to autoencoders, and in some cases, even exceeding the perfor-
mance of Collaborative Generative and Discriminative Models. Furthermore, we
explore the application of compact motion representations, namely, star
representation [7] and dynamic images [4] within a conditional diffusion
model. This study marks the first attempt at utilizing these motion representa-
tions to address the VAD task. The experimental evaluation conducted on two
large-scale datasets indicates that using the aforementioned compact motion rep-
resentations as a condition of diffusion models is more beneficial for VAD. We
also explore the transferability of unsupervised VAD methods by assessing their
generalization performance when trained on one dataset and tested on another.
When performing cross-dataset analysis, it becomes apparent that incorporat-
ing compact motion representations as the condition of diffusion models leads
to vastly superior performance. This represents a crucial feature of the proposed
method in comparison to both the state-of-the-art (SOTA) and baseline models,
making it highly valuable for practical applications.

The main contributions can be summarized in three folds. (1) We propose an
effective unsupervised VAD method, which uses compact motion representations
as the condition of the diffusion models. We show that compact motion repre-
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sentations supply relevant information and further improve VAD performance.
(2) Our method leads to enhanced generalization performance across datasets.
Its transferability is notably better than the baseline methods and the SOTA.
(3) We conduct a hyperparameter analysis for diffusion models, which yields
insights into using them for VAD.

2 Related Work

Anomaly Detection. Anomaly refers to an entity that is rare and significantly
deviates from normality. Automated anomaly detection models face challenges
when detecting abnormal events from images or videos due to their sparsity,
diversity, ambiguity, and contextual nature [23,6,33]. Automated anomaly de-
tection is a well-researched subject that encompasses various tasks, e.g., medical
diagnosis, defect detection, animal behavior understanding, and fraud detection
[31,2,29]. For a review of anomaly detection applications in different domains,
interested readers can refer to the survey paper [6]. VAD, the task at hand,
deals with complex surveillance scenarios. Zaheer et al. [32] categorized rele-
vant methodologies into four groups: (a) fully supervised approaches requiring
normal/abnormal annotations for each video frame in the training data, (b)
one-class classification requiring only annotated training data for the normal
class, (c) weakly supervised approaches requiring video-level normal/abnormal
annotations, and (d) unsupervised methods that do not require any annotations.

Labeling data is a costly and time-consuming task, and due to the rarity
of abnormal events, it is impractical to gather all possible anomaly samples for
fully-supervised learning. Consequently, the most common approach to tack-
ling VAD is to train a one-class classifier that learns from the normal data
[22,26,9,34,13]. Several of these approaches utilize hand-crafted features [16,21],
while others rely on deep features that are extracted using pre-trained mod-
els [22,26]. Generative models e.g., autoencoders and GANs have also been
adapted for VAD [8,19,23]. One-class classifiers often cannot prevent the well-
reconstruction of anomalous test inputs, resulting in the misclassification of ab-
normal instances as normal. Moreover, an unseen normal instance could be mis-
classified as abnormal because its representation may differ significantly from the
representations learned from normal training data. As evident, data collection is
still a problem for the one-class approach because it is not practical to have ac-
cess to every variety of normal training data [6,18]. Therefore, some researchers
[15,28] have turned to weakly supervised VAD, which does not rely on fine-
grained per-frame annotations, but instead use video-level labels. Consequently,
a video is labeled as anomalous even if one frame is anomalous, and normal if all
frames are normal. This setting is not optimal because labeling a video as normal
requires inspecting all frames, and it cannot localize the abnormal portion.

On the other hand, VAD methods that use unlabelled training data are quite
rare in the literature. It is important to note that several one-class classifiers
[9,34,13] have been referred to as unsupervised, even though they use labeled
normal data. Unsupervised VAD methods analyze unlabelled videos without
prior knowledge of normal or abnormal events to classify each frame as normal or
anomalous. The only published method addressing this definition is [32], which
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presents a Generative Cooperative Learning among a generator (an autoencoder)
and a discriminator (a multilayer perceptron) with a negative learning paradigm.
The autoencoder reconstructs the normal and abnormal instances while the dis-
criminator estimates the probability of being abnormal. Through negative learn-
ing, the autoencoder is constrained not to learn the reconstruction of anomalies
using the pseudo-labels produced by the discriminator. That approach [32] fol-
lows the idea that anomalies occur less frequently than normal events, such that
the generator should be able to reconstruct the abundantly available normal rep-
resentations. Besides, it promotes temporal consistency while extracting relevant
spatiotemporal features. Our method differs from [32] in that it relies solely on
a generative architecture, specifically a conditional diffusion model. The base-
line unconditional diffusion model, in some cases, surpasses the full model of
[32] while in all cases it achieves better performance than the autoencoder of
[32]. On the other hand, the proposed method improves the achievements of the
unconditional diffusion model thanks to using compact motion representations,
and importantly, it presents the best generalization results across datasets.
Diffusion Models. They are a family of probabilistic generative models that
progressively destruct data by injecting noise, then learn to reverse this process
for sample generation. [10,12]. Diffusion models have emerged as a powerful new
family of deep generative models with SOTA performance in many applications,
including image synthesis, video generation, and discriminative tasks like object
detection and semantic segmentation [24,5]. Given that diffusion models have
emerged as SOTA generative models for various tasks, we are motivated to
explore their potential for VAD through our proposed method.
Star Representation [7]. It aims to represent temporal information existing
in a video in a way that the channels of output single RGB image convey the
summarized time information by associating the color channels with simplified
consecutive moments of the video clip. Such a representation is suitable to be
the input of any CNN model and so far in the literature, it was used for dynamic
gesture recognition [1,7], while this is the first time it is being used for VAD.
Dynamic Image [4]. It refers to a representation of an input video sequence
that summarizes the appearances of objects and their corresponding motions
over time by encoding the temporal ordering of the pixels from frame to frame.
This can be seen as an early fusion technique since the frames are combined into
a single representation before further processing them such as with. It has been
used for action and gesture recognition [4,30] and visual activity modeling [3,25],
however, it has never been used for VAD.

3 Proposed Method

We design a method to use diffusion models to tackle the unsupervised VAD,
i.e. to classify each frame in a video as normal or abnormal without using the la-
bels. To provide a frame-based prediction, we classify a video clip of consecutive
N frames and then slide this window along the video. We build our model on
top of diffusion models, in particular, k-diffusion [12], which has shown better
performance w.r.t DDPM [10]. To overcome the heavy computational burden of
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Fig. 1. An illustration of the proposed method. For definitions of the abbreviations
used, please refer to the text.

dealing with video clips, we operate in the latent space of a pre-trained network
that extracts clip-level features. We then leverage the generative capabilities
of diffusion models to reconstruct noised clip features and, based on the recon-
struction error, decide whether the clip is normal or abnormal with a data-driven
threshold. While this formulation leads to SOTA performance, we further con-
dition the diffusion process with compact motion information coming from the
video clip (see Sec. 3.2) to better guide the reverse process and achieve better
performance. An overview of our method is provided in Fig. 1.

3.1 Diffusion Model

Diffusion models apply a progressive addition of Gaussian noise ϵt of standard
deviation σt to an input data point xT sampled from a distribution pdata(x)
for each timestep t ∈ [0, T ]. The noised distribution p(x, σ) becomes isotropic
Gaussian and allows efficient sampling of new data points x0 ∼ N (0, σ2

maxI).
These data are gradually denoised with noise levels σ0 = σmax > σ1 > · · · >
σT−1 > σT = 0 into new samples. Diffusion models are trained by minimizing
the expected L2 error between predicted and ground truth added noise [10], i.e.:
Lsimple = ∥ϵt − ϵ̂∥2. In this work, we use the diffusion formulation of [12], which
allows the network to perform either ϵ or x0 prediction, or something in between,
depending on the noise scale σt, nullify the error amplification that happens in
DDPM [12]. The denoising network Dθ formulation as follows:

Dθ(x;σt) = cskip(σt) x+ cout(σt) Gθ

(
cin(σt) x; cnoise(σ − T )

)
, (1)

where Gθ becomes the effective network to train, cskip modulates the skip con-
nection, cin(·) and cout(·) scale input and output magnitudes, and cnoise(·) scales
σ to become suitable as input for Fθ. Formally, given a video clip C of N frames,
i.e. C ∈ RN×3×H×W , we first extract features from a pre-trained 3D-CNN F to
obtain a feature vector fea ∈ Rf , with f the latent dimension of the network.
We then use this latent representation in the diffusion process to reconstruct
them without using any label.

We leverage the fact that denoising does not necessarily have to start from
noise with variance σ2

max, but it can place at any arbitrary timestep t ∈ (0, T ],
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Fig. 2. Examples of star representation and dynamic image for a given video clip.

as shown in [17]. We can therefore sample feat ∼ N (fea, σ2
t ) and run the diffu-

sion reverse process on it to reconstruct feaT . The choice of t allows balancing
the amount of information destroyed in the forward process, and we exploit this
fact to remove the frequency components associated with anomalies. We then
measure the reconstruction goodness in terms of MSE, with a higher recon-
struction error possibly indicating that the clip is anomalous. When deciding
whether a video frame is anomalous or not, we adopt the data-driven threshold-
ing mechanism of [32]. The decision for a single video frame is made by keeping
the distribution of the reconstruction loss (MSE) of each clip over a batch. The
feature vectors resulting in higher reconstruction error refer to anomalous clips
and vice versa. This decision is made through the data-driven threshold Lth,
defined as Lth = µp + k σp where k is a constant, µp and σp are the mean and
standard deviation of the reconstruction error for each batch.

3.2 Compact Motion Representations

We further extend the described diffusion model to incorporate compact motion
representation in the process to provide rich motion information. We compute
this representation using two different approaches: Star representation [7] or
Dynamic Image [4]. Visual examples of these two representations are presented
in Fig. 2 and a complete description is presented as follows.
Star RGB Images. The objective of using star representation is to depict the
time-based data present in an input RGB video [1,7]. The star representation
matrix M computation is computed as given in Eq. 2 where Ik(i, j) represents
the RGB vectors of a pixel at a given (i, j) position at k − th frame and λ is
the cosine similarity of the RGB vectors. By using such a cosine similarity star
representation also includes the information change in hue and saturation.

M(i, j) =

N∑
k=2

(
1− λ

2

)
.| ∥ Ik−1(i, j) ∥2 − ∥ Ik−1(i, j) ∥2 |, (2)

where N is the length of the video clip. To create an RGB image as the output,
each video segment is divided equally into three sub-videos such that each sub-
video is used for generating one of the RGB channels. Thus, the resulting image
channels convey the summarized information of consecutive moments.
Dynamic Image Computation. A dynamic image presents a summary of
object appearances and their motions throughout an input video sequence by
encoding the sequential order of pixels from one frame to another. Dynamic
image computation uses RGB images directly by multiplying the video frames
by αt coefficient and summing them to generate the output image with the
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formula given d∗ =
∑N

k=1 αkIk, αk = 2k −N − 1, where Ik is the kth image of
the video segment and N is the number of frames in the video segment.
Conditioning on Compact Motion Representation. After extracting the
compact motion representation of a clip C, we obtain the conditioning feature
vector cond through a pre-trained 2D-CNN Fcond. We inject this both in the
encoder and in the decoder part of our network G by summing with the input
features. To deal with the different dimensionality of the two blocks, we use 2
linear projections to obtain vectors of the same size as the input.

4 Experimental Analysis and Results

The evaluation metric employed in this study is the Area Under the Re-
ceiver Operating Characteristic (ROC) Curve (AUC), which is determined using
frame-level annotations of the test videos within the datasets, consistent with
established VAD methodologies. In order to evaluate and compare the effective-
ness of the proposed approach, the experiments were carried out on two main-
stream large-scale unconstrained datasets: UCF-Crime [27] and ShanghaiTech
[14]. The UCF-Crime dataset [27] was obtained from diverse CCTV cameras
that possess varying field-of-views. It consists of a total of 128 hours of videos,
with annotations for 13 distinct anomalous events e.g., road accidents, theft,
and explosions. To ensure fair comparisons with the SOTA, we utilized the stan-
dardized training and testing splits of the dataset, which consist of 810 abnormal
and 800 normal videos for training, and 130 abnormal and 150 normal videos
for testing, without utilizing the labels. On the other hand, the ShanghaiTech
dataset [14] was recorded using 13 distinct camera angles under challenging
lighting conditions. For our study, we utilized the training split, which com-
prises 63 abnormal and 174 normal videos, as well as the testing split, consisting
of 44 abnormal and 154 normal videos, in accordance with SOTA conventions.

4.1 Implementation Details

Architecture. In line with [32], we use 16 non-overlapping frames to define a
video clip, and we use pre-trained 3D-ResNext101 or 3D-ResNet18 as feature ex-
tractor F [6,32]. After computing the compact motion representation, we extract
a single conditioning vector with Fcond with a pre-trained ResNet50 or ResNet18
due to their widespread use together with such motion representations [3,25]. We
use an MLP with an encoder-decoder structure as the denoising network G, and
the encoder is comprised of three layers with sizes of {1024, 512, 256}, while the
decoder has hidden dimensions of {256, 512, 1024}. The timestep information σt

is transformed via Fourier embedding and integrated into the network by FiLM
layers [20], while the conditioning on compact motion representation is applied
after timestep integration by summation to the inputs.
Training and sampling. The learning rate scheduler and EMA of the model
are set to the default values of k-diffusion, which include an initial learning rate of
2×10−4 and InverseLR scheduling. The weight decay is set at 1×10−4. Training
is conducted for 30 epochs with a batch size of 256, while testing is performed
on 8192 samples as in previous literature [32]. Several hyperparameters affect
the diffusion process in k-diffusion, and given the novelty of the task at hand,
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Table 1. Performance comparisons with the SOTA and the baseline methods on
ShanghaiTech [14] dataset. The best results are in bold. The second best results are
underlined. The full model of [32] includes generator, negative learning, and discrimi-
nator. NA stands for not-applicable. Results with ⋄ are taken from [32].

Method Feature Condition AUC (%)

State-of-the-art Methods

Kim et al. [13]⋄ 3D-ResNext101 NA 56.47
Autoencoder [32] 3D-ResNext101 NA 62.73
Autoencoder [32] 3D-ResNet18 NA 69.02
Full model [32] 3D-ResNext101 NA 72.41
Full model [32] 3D-ResNet18 NA 71.20

Baseline Methods

Diffusion 3D-ResNext101 - 68.88
Diffusion 3D-ResNet18 - 76.10
Diffusion Star Rep. [7] w/ ResNet18 - 62.81
Diffusion Star Rep. [7] w/ ResNet50 - 59.55
Diffusion Dyn. Img. [4] w/ ResNet18 - 62.88
Diffusion Dyn. Img. [4] w/ ResNet50 - 64.96

Other Conditional Diffusion Models

Diffusion Star Rep. [7] w/ ResNet18 3D-ResNext101 64.87
Diffusion Star Rep. [7] w/ ResNet50 3D-ResNext101 65.01
Diffusion Star Rep. [7] w/ ResNet18 3D-ResNext18 64.03
Diffusion Star Rep. [7] w/ ResNet50 3D-ResNext18 64.15
Diffusion Dyn. Img. [4] w/ ResNet18 3D-ResNext101 66.66
Diffusion Dyn. Img. [4] w/ ResNet50 3D-ResNext101 64.24
Diffusion Dyn. Img. [4] w/ ResNet18 3D-ResNext18 65.02
Diffusion Dyn. Img. [4] w/ ResNet50 3D-ResNext18 65.26

Proposed Method

Diffusion 3D-ResNext 101 Star Rep. [7] w/ ResNet18 65.12
Diffusion 3D-ResNext 101 Star Rep. [7] w/ ResNet50 65.17
Diffusion 3D-ResNext 101 Dyn. Img. [4] w/ ResNet18 66.36
Diffusion 3D-ResNext 101 Dyn. Img. [4] w/ ResNet50 65.09
Diffusion 3D-ResNet18 Star Rep. [7] w/ ResNet18 76.36
Diffusion 3D-ResNet18 Star Rep. [7] w/ ResNet50 77.18
Diffusion 3D-ResNet18 Dyn. Img. [4] w/ ResNet18 74.61
Diffusion 3D-ResNet18 Dyn. Img. [4] w/ ResNet50 76.16

we do not rely on parameters from prior literature. We, therefore, conduct an
extensive exploration of the effects of training and testing noise. Training noise is
distributed according to a log-normal distribution with parameters (Pmean, Pstd),
while sampling noise is controlled by σmin and σmax, and below, we investigate
their role. For the diffusion reverse process, we use LMS sampler with the number
of steps T set to 10.

4.2 Results

We first compare our method’s results with SOTA and baseline methods. Then,
we report the results of the cross-dataset evaluation, where the training and
validation sets are from a different domain than the test split. Finally, we analyze
how the hyperparameters of the diffusion models affect VAD performance.
Performance Comparisons. The performance of the proposed method to-
gether with the SOTA and baseline methods’ (i.e., unconditional diffusion model)
results are given in Tables 1 and 2 for the ShanghaiTech [14] and UCF-Crime
[27] datasets, respectively. These tables also include an ablation study such that
the condition of the diffusion models is changed between star representation, dy-
namic images, and spatiotemporal features, in addition to changing the feature
backbone between 3D-ResNext101 and 3D-ResNet18, and the motion represen-
tation backbone between ResNet50 and ResNet18.
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Table 2. Performance comparisons with the SOTA and the baseline methods on UCF-
Crime [27] dataset. The best results are in bold. The second best results are underlined.
The full model of [32] includes generator, negative learning, and discriminator. NA
stands for not-applicable. Results with ⋄ are taken from [32].

Method Feature Condition AUC (%)

State-of-the-art Methods

Kim et al. [13]⋄ 3D-ResNext101 NA 52.00
Autoencoder [32] 3D-ResNext101 NA 56.32
Autoencoder [32] 3D-ResNet18 NA 49.78
Full model [32] 3D-ResNext101 NA 68.17
Full model [32] 3D-ResNet18 NA 56.86

Baseline Methods

Diffusion 3D-ResNext101 - 62.91
Diffusion 3D-ResNet18 - 65.22
Diffusion Star Rep. [7] w/ ResNet18 - 59.60
Diffusion Star Rep. [7] w/ ResNet50 - 61.14
Diffusion Dyn. Img. [4] w/ ResNet18 - 60.14
Diffusion Dyn. Img. [4] w/ ResNet50 - 62.73

Other Conditional Diffusion Models

Diffusion Star Rep. [7] w/ ResNet18 3D-ResNext101 59.26
Diffusion Star Rep. [7] w/ ResNet50 3D-ResNext101 63.20
Diffusion Star Rep. [7] w/ ResNet18 3D-ResNext18 61.14
Diffusion Star Rep. [7] w/ ResNet50 3D-ResNext18 60.78
Diffusion Dyn. Img. [4] w/ ResNet18 3D-ResNext101 58.23
Diffusion Dyn. Img. [4] w/ ResNet50 3D-ResNext101 61.04
Diffusion Dyn. Img. [4] w/ ResNet18 3D-ResNext18 65.06
Diffusion Dyn. Img. [4] w/ ResNet50 3D-ResNext18 61.27

Proposed Method

Diffusion 3D-ResNext101 Star Rep. [7] w/ ResNet18 58.82
Diffusion 3D-ResNext101 Star Rep. [7] w/ ResNet50 63.00
Diffusion 3D-ResNext101 Dyn. Img. [4] w/ ResNet18 60.12
Diffusion 3D-ResNext101 Dyn. Img. [4] w/ ResNet50 63.52
Diffusion 3D-ResNet18 Star Rep. [7] w/ ResNet18 63.67
Diffusion 3D-ResNet18 Star Rep. [7] w/ ResNet50 66.85
Diffusion 3D-ResNet18 Dyn. Img. [4] w/ ResNet18 60.69
Diffusion 3D-ResNet18 Dyn. Img. [4] w/ ResNet50 66.11

As seen in Table 1, the proposed method outperforms all others on the Shang-
haiTech [14] dataset, achieving the best results by surpassing the SOTA autoen-
coder [32] by 14.45%, the SOTA collaborative generative and discriminative
model [32] by 4.77%, and the SOTA [13] by 20.71%. The proposed method also
improves upon the unconditional diffusion models (i.e., baselines) by 1.08%. It is
worth noting that other conditional diffusion models, i.e., using spatiotemporal
features as the condition and compact motion representation as input, are oc-
casionally less effective than our method, with the proposed method surpassing
them by 10.52%. The best performance is achieved by using a 3D-ResNet18 as
the feature backbone, star representation as the condition, and ResNet50 as the
corresponding backbone. On the other hand, for the UCFC dataset [27] (Table 2),
the proposed method achieves the second-highest score after the more complex
model of [32], which employs a generator, discriminator and negative learning.
Nonetheless, our method outperforms the SOTA autoencoder [32] by 10.53% and
the SOTA [13] by 14.85%. It also demonstrates superior performance compared
to the baseline and the other conditional diffusion models by 1.63% and 1.79%,
respectively. Furthermore, the optimal performance of the proposed method for
this dataset is achieved by utilizing 3D-ResNet18 as the feature backbone, star
representation as the condition, and ResNet50 as the condition backbone.

Cross-dataset Analysis. When performing this analysis, we take into consid-
eration the results presented in Tables 1 and 2 such that we select the combina-
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Table 3. Cross-dataset analysis (Training dataset -> Testing dataset). The best results
are in bold. The second best results are underlined. The full model of [32] includes
generator, negative learning, and discriminator. NA stands for not-applicable.

Method Feature Condition AUC (%)

UCFC -> ShanghaiTech

Autoencoder [32] 3D-ResNext101 NA 55.86
Autoencoder [32] 3D-ResNet18 NA 47.48
Full model [32] 3D-ResNext101 NA 55.94
Full model [32] 3D-ResNet18 NA 49.19
Diffusion (Baseline) 3D-ResNet18 - 60.55
Diffusion (Baseline) Star Rep. [7] w/ ResNet50 - 54.67
Diffusion (Baseline) Dyn. Img. [4] w/ ResNet50 - 58.14
Diffusion (Proposed) 3D-ResNet18 Star Rep. [7] w/ ResNet50 64.54
Diffusion (Proposed) 3D-ResNet18 Dyn. Img. [4] w/ ResNet50 63.58

ShanghaiTech -> UCFC

Autoencoder [32] 3D-ResNext101 NA 52.45
Autoencoder [32] 3D-ResNet18 NA 46.53
Full model [32] 3D-ResNext101 NA 52.29
Full model [32] 3D-ResNet18 NA 49.57
Diffusion (Baseline) 3D-ResNet18 - 63.97
Diffusion (Baseline) Star Rep. [7] w/ ResNet50 - 60.21
Diffusion (Baseline) Dyn. Img. [4] w/ ResNet50 - 60.75
Diffusion (Proposed) 3D-ResNet18 Star Rep. [7] w/ ResNet50 65.17
Diffusion (Proposed) 3D-ResNet18 Dyn. Img. [4] w/ ResNet50 64.97

tions of input feature and condition backbone that yield the best results. Table 3
shows that our methods achieve significantly better results in cross-dataset anal-
ysis, regardless of which compact motion representation is used as the condition,
compared to all other baselines and SOTA methods. Notably, the performance
of the proposed method is remarkable (8.6-17.06% better) in comparison to both
the generative model and full model proposed by [32]. On the other hand, the
baseline unconditional diffusion model that utilizes spatiotemporal features out-
performs the baseline unconditional diffusion model that uses compact motion
representations. The relative effectiveness of the proposed method is of signifi-
cant practical importance, as in most cases, the deployment domain differs from
the domain on which the model is trained.
Hyperparameter Analysis. We study the effect of the training noise on the
learning process, and we find that baseline diffusion and our method both achieve
higher results with smaller values of noise, meaning a lower Pmean. Importantly,
our method generally achieves better performance than the baseline, given the
same parameters, for a wider choice range of training noise parameters, making
it less sensitive to this choice. We explore the effect of Pmean ∈ [−5,−0.5] and
Pstd ∈ [0.5, 2.]. On the other hand, recalling that t closer to zero indicates a point
closer to an isotropic Gaussian distribution, we explore the effect of different t as
the starting point of the reverse process. While the baseline unconditional
diffusion achieves its best performance with t = 4 and t = 6, we find that our
method achieves better performance in high-noise areas (t = 1, t = 2), effectively
allowing the removal of more information from the clip vector, and proving the
effectiveness of conditioning on motion representation for the task at hand.

5 Conclusions

We have presented a novel approach for unsupervised VAD, which can accu-
rately identify and locate anomalous frames by utilizing only the reconstruction
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capabilities of diffusion models. Our conditional diffusion model uses features ex-
tracted from compact motion representations as the condition while it takes the
spatiotemporal features extracted from pre-trained networks as the input. By do-
ing so, we show the contribution of the compact motion representations, i.e., our
method succeeded in improving the SOTA VAD results while also demonstrating
remarkable transferability across domains. Note that the unsupervised nature of
our approach allows for an anomaly detection system to begin identifying abnor-
malities based solely on observed data, without any human intervention. If no
abnormal events have occurred, the system may mistakenly identify rare normal
events as abnormal. However, it is expected that such anomaly systems operate
for a longer period of time, thus, the likelihood of having no abnormal events
decreases significantly. In the future, we aim to modify our method in a way that
it can operate on edge devices with near real-time capabilities.
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